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Diffusion in Zeolites as Flow of Lattice Gas 
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The diffusivity D of pure substances in idealized zeolite crystals is analyzed on 
the basis of the hopping model and its various extensions. Forces between 
neigboring molecules are taken into account as well as multiple adsorption in 
cages and the possibility of extended jumps. Finally, the case of correlated 
jumps is considered. For each model, D is approximated for small concentra- 
tions and in the saturation limit. Only the model with cages permitting at least 
three molecules is capable of reproducing the prevalent observed behavior. 

KEY WORDS: Interacting lattice gas; models ofdiffusion in zeolites; multiple 
adsorption in cages. 

1. FAILURE OF T R A D I T I O N A L  M O D E L  

Migra t i on  of  foreign molecules  in a zeoli te crysta l  or  in any o rdered  
m i c r o p o r o u s  m e d i u m  is usual ly  mode led  as flow of  a lat t ice gas. In  view of  
the great  con t r ibu t ions  made  in this field by  Ma t th i eu  Ernst ,  tt-31 there is 
reason  to jo in  the ce lebra t ion  and  good  wishes in this issue with a discus- 
s ion of  zeoli t ic diffusion. On ly  t r anspo r t  diffusivity of  pure  substances  will 
be considered;  mixtures  as well as self-diffusivity ( = t r a c e r  diffusivity) 
require  a more  e l abora t e  analysis.  

The  diffusivity of  any  subs tance  in a zeoli te  is a function of  tem- 
pe ra tu re  and concent ra t ion .  At  no t  too  high T the t empera tu re  dependence  
general ly  follows the Arrhen ius  law, D oc e x p ( - E / k T ) ,  which is t aken  as 
an ind ica t ion  tha t  the rmal ly  ac t iva ted  t rans i t ions  over  bar r ie rs  of  height  E 
are  involved/4~ On  the o the r  hand,  the concen t ra t ion  dependence  is ra ther  
unexpected:  D a lways  s t rongly  increases with increas ing concent ra t ion ,  often 
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by more than a factor of 10 over the available range. (Typical example: 
heptane in zeolite 5A. c4~) It appears that, in a crude way, the initial value 
of the derivative can be approximated by 

1 d iD(O)]  1 
D(0) ~ ,,=,, ~ 0~,t (I)  

if 0 is the average occupancy of an adsorption site or cage and O~,t the 
saturation value. For simple adsorption sites Os~,t-- 1, whereas voluminous 
cages containing several adsorption sites allow larger values. Since Os~,t is 
often not known with certainty, Eq. (1) is somewhat tentative. 

A mechanism which would simultaneously reproduce condition (1) 
and high limiting values D,, , -  D(O,,,t) is hard to find, as will become clear 
in the subsequent survey of the traditional hopping model and of several 
of its possible extensions. In each case the behavior of D(O) near 0 = 0 and 
the saturation limit are easy to assess, so that checks against the mentioned 
two properties can be made. 

The traditional model treats the diffusing substance as a noninter- 
acting lattice gas, just as is done in Langmuir's theory of adsorption/5~ 
A particularly simple model is that of a simple cubic lattice, with simple 
adsorption sites at the nodes (0~, = 1) and with a barrier on each bond. 
It is assumed that the jumps are uncorrelated and that they occur only 
between neighboring sites. With a lattice constant l and a jump rate r to 
any empty neighboring site (so that for an isolated molecule the total jump 
rate is 6r), we obtain D = 12r. In the absence of interaction between the 
adsorbed molecules r cannot depend upon 0, so that D should be constant, 
which disagrees with observations. 

Some zeolites, like zeolite A, have a structure similar to the above 
picture, except that they usually permit multiple adsorption in cages at the 
nodesJ 4~ Some other types have a noncubic lattice, so that diffusivity 
tensors must be introduced. Such generalizations, as well as structures with 
parallel bundles of quasi-one-dimensional channels, ~6~ will not be con- 
sidered in the present discussion. 

2. R E P U L S I O N  B E T W E E N  N E I G H B O R S  

A concentration-dependent jump rate with the desired sign of the 
derivative is obtained by allowing for repulsive interaction between adsorbed 
molecules. We are going to review and extend the respective theory of Reed 
and Ehrlich, ~71 who considered only nearest neighbor interaction using the 
quasichemical approximation. ~81 Actually, one only needs a rudimentary 
version of this approximation, which ignores the possibility of an ordering 
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phase transition. For ordinary temperatures the simplification appears well 
justified. 

As before, we imagine simple adsorption sites located at the nodes of 
a simple cubic lattice, where each site has six nearest neighbors. Because of 
interaction, the energy of an isolated pair of molecules occupying neigh- 
boring sites is raised by an amount W. The probability of occurrence of 
such pairs is depressed by a factor 

,2, 

It will suffice to consider steady-state diffusion due to a gradient of 0 in the 
x direction. To evaluate the net flux j through the plane between two 
adjacent sites i and i +  1 (along the x axis), we must know the forward 
and backward average jump rates ri_i+~ and r~+L_i. But first we need 
the probabilities of occupation of a pair of sites i and i +  1 along x. 
Approximations for small 0 will suffice. In the absence of interaction, when 
there are no correlations, I'~ the probability for both sites being occupied is 
0~0i+ t, which becomes modified to 0~0~+~r/by the interaction. Hence the 
conditional probabilities for i + 1 to be occupied or empty, if i is known to 
be occupied, are 0i+ ~t/and 1 -0~+ t r/, respectively. For larger O's the situa- 
tion is less simple and the quasichemical approximation as used by Reed 
and Ehrlich would have to be invoked. 

Once we prescribe that the site i +  1 to the right of the occupied one 
(i) is empty, there can still be up to five occupied sites next to the latter, 
namely at four places in the plane i and one at i -  1. Following the same 
reasoning as before we conclude that for small O's the average number of 
neighbors around location i is ~1(40~ + 0~_ ~ ). Better to say, this is the prob- 
ability for having one neighbor; the probability to find more than one is 
negligible. If the energy level of the barriers in the "windows" between sites 
remains unchanged, the lifting of the bottom level by W enhances the jump 
rate by a factor r/- ~ = exp(W/kT). The average jump rate from i to i + 1 is 
thus 

�9 r i _ i + ~ = r [ 1 - q ( 4 O i + O i - t ) + r l - t r l ( 4 O i + O i - t ) ]  

= r[ 1 + (1 - q)(40i + 0;_ ~)] (3) 

and similarly for r~+~_a. The undisturbed jump rate of an isolated 
molecule into any one direction has been denoted as r without subscript. 

Both rates must be substituted into an expression for the flux 

j = v l [  Oi( 1 - qOi + I) r i  ~ i+ i - -  Oi + t( 1 -- riO i) r i  + i ~ i] (4) 
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where v = 1 - 3 is the number density of adsorption sites. After expressing the 
differences in terms of derivatives, we obtain Fick's law, j = --vD(O)dO/dx, 
and a first-order approximation for the diffusivity, 

D(O) = Do[ 1 + 12(1 - q) 0 + 0(02)] (5) 

where Do =12r. The approximation agrees with what follows up to this 
order from expression (41) of Reed and Ehrlich, though the present argu- 
ment slightly deviates from theirs. The initial slope according to Eq. (1) is 
reproduced by choosing q = 11/12. Since I - r / =  1/12 approximates W/kT,  
the ratio on the left of (1) is expected to be roughly proportional to T -  ~. 
This is a much weaker dependence than the exponential one involved in 
D o. However, if the theory is justified, accurate measurements over a broad 
temperature range should reveal deviations from the value on the right 
o f ( I ) .  

A generalization of approximation (5) which includes interactions 
beyond nearest neighbors becomes somewhat tedious. In addition to the 
parameter r / from before, we also must consider ~/,, = exp( - W,,/kT),  where 
IV,, are the interaction potentials with molecules at the distances R,,, 
n = 2, 3 ..... Let us look at the first cubic shell around the site under con- 
sideration, i.e., at the closest neighbors specified by the indices (100), (110), 
and (111). The respective distances are R t = l, R 2 = x / /2  l, and R 3 = ~ l. 
By way of example we are going to choose an inverse power-law potential, 
W,, = W(I/R,,) ~', so that IV_, = W/2 ~/'- and W 3 = W/3 ~/'-. 

The extension will only be consistent if also the effect of the interaction 
upon the window potential is taken into account. The joint potential 
energy of a molecule in the window and one adsorbed at distance R',,, is 
increased by an amount AE,,,= W(I/R',,)L For the window at halfway 
between i and i +  1, the distances to the sites upon the same shell as before 
a r e  

R', = x / ~  l, R" = (3/2) l, R; = v/~-/4 l, R] = x//i7/4 l 

so that, for instance, z~E3 = W/(13/4) ~/'-. For  the sake of subsequent use we 
define r/' m = exp( -AEm/kT) .  

If a site at distances R,, from the site i and R',,, from the window 
between i and i + 1 is ocupied, the joint potential with a molecule waiting 
at i to jump to i + 1 is increased by W,,. Then, when the molecule is passing 
through the window, the increase equals AE,,,. Hence the barrier that must 
be overcome is lowered by the amount IV,,-ztE,,,. Thereby the jump rate 
increases by a factor q',,,q,7 ~ . This factor enters the corresponding term in 
an expression for the average jump rate and plays a similar role as the ~/- 
in the first line of (3). 
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Proceeding further as before with Eqs. (3) and (4) and taking account 
of the number of neighbors, we obtain the approximation 

D(O) = Do{ 1 + 214(r/'t - r/) + 2(r/~ - q) + 4(q~_ - q2) 

+ 8(q;-q_,) + 8(q~,-q~)+ .-. ] 0+0(02)}  (6) 

For small W/kT this result reduces to 

D(O) =Do[1 + 2zen-(1 - r / )  0 +  0(02)] (7) 

where the effective coordination number is given by 

Zef f=  
6 4 /sj4, J2 4 8 

(3/2) ~ (13 /4 -~)  

8 

For large 0q convergence of this series is fast and the resulting zen- is not 
much different from 6. An abnormally small exponent 0c = 3 is valid if the 
interaction is mediated by elastic deformation of the lattice. An adsorbed 
molecule is likely to cause a small compression of the surrounding, thereby 
acting like a point defect. This produces a displacement u(R), which in any 
given direction falls off like R-2. ~~ The interaction energy is presumably 
proportional to V. u. While for an isotropic medium this quantity vanishes, 
in general it falls off like R -3 in any given direction. However, the coef- 
ficient then depends upon the direction. According to the sign of the third 
elastic modulus of the cubic medium, It~ V-u has one sign along the the 
crystallographic axes and the opposite sign in diagonal directions, 3 so that 
the series analogous to (8) contains positive and negative terms. At large 
distances the angular average of V. u vanishes, as can be seen by integrating 
this quantity over a spherical shell and applying the Gauss theorem. Thereby 
fast convergence of the above expansion is restored. 

Let us now turn to the behavior of diffusivity at high concentration. 
The saturation limit Ds,t can be derived without relying upon uncertain 
approximations, simply by considering the random walk of an isolated 
vacancy. An adsorbed molecule next to the vacancy is totally surrounded 

~ It is remarkable that similarly anisotropic interaction between adsorbents on surfaces has 
been inferred by Watanabe and Ehrlich from observed correlations, tll~ 
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by other molecules, except for the vacancy. The jump rate is modified by 
the corresponding powers of the q's, and the resulting diffusivity is 

t8 t91 t4 t4 .. r~ r/I r/2 13 r/4 ' "  
Os.. = "--'o ~ - -  

r I 112-q3. . .  
(9) 

With r /= 11/12, and with interaction only between nearest neighbors 
(so that all higher q's are equal 1), the saturation value of the diffusivity 
is Ds,, = D,q -s= 1.55Do. Also, this limit agrees with what can be deduced 
from Reed and Ehrlich's formula (41). For  sensible values of the q's and as 
long as we stick to the initial slope according to Eq. (1), the more general 
formula (9) gives similar ratios. Thus we arrive at a rather pessimistic con- 
clusion: Since as a rule much larger limiting ratios D~SDo are observed (as 
mentioned in the introduction), hopping models with simple adsorption 
sites cannot fully explain the measured concentration dependence of dif- 
fusivity in zeolites, regardless of the presumed kind of interaction between 
the adsorbed molecules. 

3. MULTIPLE A D S O R P T I O N  

Somewhat better results are obtained using a model with multiple 
adsorption in "cages" at the nodes of a simple cubic latticeJ '~ Repulsive 
interaction is allowed only for molecules within a cage, and the maximal 
number of molecules per cage is taken as 0~,, = 2. (A more general model 
of this kind has previously been used for explaining deviations from 
Langmuir's adsorption isotherm. ~-'~) We shall again only be interested in 
the behavior of D(O) for small and for large 0, which can be derived from 
a simplified argument. 

Let us assume that for a pair of molecules within a cage, compared to 
two separate molecules, the energy is raised by an amount 2AV. The 
probabilities for any cage to contain 0, 1, or 2 molecules are approximated 
by 

wo = 1 - 0 + �89 + O(0-~), wl = 0 -e202  + O(03), 

w2 = ~e-0- + 0(03) (10) 

as follows from 

w0+w I + w 2 =  1, wl + 2 1 | ' 2 = 0 ,  n'oW, = / e 2 w /  (11) 

The last relation contains e = exp( - e l  V/kT), and is derived from the grand 
canonical partition function, under the assumption that the adsorption 
sites within a cage are indistinguishable. 
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With the barriers between the cages supposed to remain at the same 
height, the jump rate from a doubly occupied cage to an empty or singly 
occupied one equals (2/e 2) r. (This is the rate per cage, not per molecule.) 
In the sense of Eq. (4), the flux can now be written as 

j = vh" {[wj(0;) Wo(0i+ i) - w0(0i) w,(0i+ ,)] 

2 
+ ~  [ w_,(0;) wo(0;+,  ) - % ( 0 3  w_,(0i+ ~)] 

8-  

2 } +--; [ w,_(Oi) wl(0i+ i) -wl (0 ; )  w,_(0~+ ~)] 
8-  

(12) 

Advantage has been taken of the finding that correlations between occu- 
pancies of adjacent cages are negligible/9~ Substitution of (10) yields the 
approximation 

D(O) =Do[1 +2(1 - e  2) 0 +  O(0-')] (13) 

where again Do = t-'r. Condition (1) is satisfied for 8-'= 3/4. We then have 
roughly 2( 1 - e  2) ~ 2A V/kT, so that again an approximate 1/T behavior of 
this coefficient in (13) is expected. 

To obtain the limit D~,,t=D(2), we assume one cage singly and the 
rest doubly occupied, and look at the random walk of the "semivacancy." 
With the modified jump rate (2/8-') r the result is immediate: 

D,~,l 2 
Do 82 (14) 

which equals 8/3 = 2.67 for the chosen e 2. This is still below the typical 
measured ratio quoted in the introduction. 

In view of the proposed value of e 2, which implies a rather small ratio 
A V/kT, it seems natural to consider the possibility that a third molecule 
becomes squeezed into the cage. Thus extending our earlier model, c9~ and 
assuming that further additions are impossible, we set 0s,,=3. The 
adsorbed triplet has an energy higher by 3zl V' compared to three separate 
molecules, with A V' > A V, so that the jump rate from the cage is enhanced 
by a factor 3/e '3, with e ' =  exp ( -A  V'/kT) < e. By extending the set of iden- 
tities (11), we verify that the second-order approximations (10) remain 
valid, and that the probability for triplets is approximated by w3 = 
r,(e 0)- + 0(04). 
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Three more terms must now be added to Eq. (12), each of them con- 
taining w 3. Clearly they carry the factor 0 2 or higher powers. Thus nothing 
changes in the first-order approximation (13) for the diffusivity. On the 
other hand, when the limit 0s,, = 3 is approached, most cages are full, while 
a few isolated ones contain one molecule less. The probability of finding a 
singly occupied or empty cage is negligible by comparison. Since the jump 
rate from any full cage is (3/e '3) r, the random-walk argument gives 

Dsat 3 
Do e '3 (15) 

By a suitable choice of e' it is always possible to fit any high limiting value 
without affecting the initial slope. 

Another conceivable option is a combination of the idea of multiple 
adsorption with interaction between molecules in neighboring cages. For  
the sake of simplicity we now consider only nearest neighbors, and allow 
a maximum of two molecules per cage. If two neighboring cages are singly 
occupied, the energy is assumed to be higher by IV, which leads to an 
~/-J-fold enhancement of the jump rate, as before. If one cage is singly and 
the other doubly occupied, the energy change is twice as large, resulting 
in an q-2-fold enhancement. Finally, if both cages are doubly occupied, 
the energy shift is 4IF and the enhancement factor q-4. Plausible results 
follow: 

D ( 0 ) _ l + 2 [ ( l _ e 2 ) + 6 ( l _ q ) ] 0 + O ( 0 , _ )  ' D ~ , t  - _ 2 ( 1 6 )  
Do Do ,g21122 

In deriving the second equation we observe that the molecule ready to 
jump from a doubly occupied site is surrounded by five doubly and one 
singly occupied site, which yields 5 . 4  + 2 = 22 as the exponent of r/-~. 
While it is trivial to choose e : <  I and 1/< 1 so as to meet condition (1), 
after such adjustment the ratio D~JDo is between 8/3 and 5.1. As before, 
these values can be further increased by permitting larger 0s~,t. 

We conclude that among the various versions of the hopping model, 
only those allowing for more than two molecules per cage are adaptable to 
both initially mentioned criteria. Though the idea of multiple adsorption in 
cages with 0s~, >/3 seems realistic in many cases, it is unpleasant that at 
least two parameters must be adjusted to meet just two criteria. It seems 
of interest to try the two models of Ruthven and Goddard]  ~21 who admit 
arbitrary Os,t--m with a sequence of coefficients e,., s = 2 ,  3 ..... m (e2-~ ,  
e 3 - g ) .  These depend only upon one parameter, the relative effective 
volume y < 1 of an adsorbed molecule. The model is based upon the idea 
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of excluded volume, with no other interaction (r /= 1), which leads to 
e.~ = 1 - s ~ ,  or to e.,.= ( 1 - s ) O / ( 1 - ) , )  in the refined version. In both cases 
the saturation occupancy m - 0 s m  equals the integer part of 1/),. Unfor- 
tunately, with the coefficient as in (13), neither model permits a consistent 
fit to condition (1). 

The difficulty does not arise if instead of the excluded volume we 
imagine point particles with interaction energy 2A V per pair. Accordingly, 
we postulate e.,. = e"-  ~ for s = 2, 3 ..... m. Knowing that the first-order term 
in (13) is insensitive to contributions from multiply occupied cages, we take 
e 2 = l - 1 / ( 2 m ) ,  so as to satisfy condition (1). To assess the limiting 
behavior, we again consider jumps in an otherwise full lattice to an isolated 
site with occupation m - 1. The result Ds~,t/Do = me,7,"' = m e  .... I .... ~ equals 
5.2 for m = 3 and 8.9 for m = 4. Thus it seems that we are finally on the 
right track, though a reliable physical justification of the model (possibly 
of an intermediate kind) is still lacking. 

A possible additional mechanism affecting the diffusivity in zeolites is 
elastic deformation of the lattice by the adsorbent. For a loose structure 
permitting multiple adsorption in cages the sign of the potential suggests 
that forces between single adsorbed molecules and the cage walls are 
attractive. This must result in a shrinking of the structure. In multiple 
adsorption, when less space is available to the adsorbent, the described 
effect is expected to be less than additive, and it is conceivable that for full 
cages it turns into repulsion. Then the deformation might widen the exits 
from the cage, thereby lowering the barriers. However, the resulting 
influence upon the diffusivity would at any rate remain superimposed upon 
and difficult to distinguish from the more direct effect due to repulsion 
between molecules within the cage. 

4.  E X T E N D E D  J U M P S  

Experiments with diffusion of palladium atoms on a W(211) surface 
have shown that occasionally direct jumps to places beyond the nearest 
neighbors occurY 13) We are going to consider such a possibility as another 
extension of the lattice-gas model. 

The discussion will again be restricted to a simple cubic lattice of 
simple adsorption sites, with jumps only occurring in the directions of the 
axes, and with a gradient established along one of them. The jump rate 
from an occupied site to one of the nearest neighbors (if it is empty) shall 
be r o = r; to one of the next-nearest neighbors r~ (again if it is empty), and 
so on. We suppose that r 0>r~ > r _ , > . . . ,  and that the sum of the r's 
converges sufficiently fast to justify the subsequent manipulations. The flux 
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from site i to i + 1 will be expressed in terms of an average ( . . .  ) involving 
random occupations 0,~ whose averages are the 0~: 

j=vl L L ' ) + a K [ O ; - ~ ( 1 - - O , + k + , ) - - O , + k + t ( 1 - - O ; - f l ] )  
j = 0 k = 0 

=vl ~, ~ (S+k[O,_i--O,+k+,] (17) 
j = O  k = O  

The average has been taken after cancellation of the product terms. In case 
of a linear gradient we may write Os= 0 and Oi+k = O+ k dO. When this is 
substituted, and AO expressed by the derivative, the following result for the 
diffusivity ensues: 

D=I 2 ~ (sWl)2r,, (18) 
s = O  

We have substituted j + k = s and summed over j or k. Clearly D does not 
depend upon O, whatever our choice of the r's would be. For the sake of 
having a specific example, let us take r, = rh'', with K < 1. By manipulating 
the series for 1/( 1 -  x) and for its derivatives, we find 

l + a  
D=12r - (19) 

(1 -1,') 3 

Concentration dependence does arise if the jump rate is influenced by 
the presence of a neighbor. Following an idea of S. Yu. Krylov (private 
communication), we assume that the rates in one direction are given by r,. 
whenever the opposite neighboring site is empty but are equal to (1 + ( ) r ,  
when that site is occupied. Then 

j=vl y. y. rj+k<{EO,-j(1--O,+,+,)--O,+k+,(1--e,_;)] 
. i  = 0 k = 0 

+([O,_ j_ lO,_ f l l -O ,+k  ~,)--O,+k+20,+k+,(l - - O , _ f l ] } )  (20) 

If correlations are negligible, then the averaging can be carried out also in 
the second part of the quoted expression. We again write Oi+k=O+k dO 
and neglect the terms of higher order in dO. The following expression for 
the diffusivity is obtained: 

D=12~, r,.{(s + 1)2+ ( ( s +  1 )[2(s + 2) O - ( s +  3) 02)]} 
0 

(21) 
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In the example with r,. = rlt'', which can be handled in the same way 
as before, the result reduces to 

{ ~ [40--(3--h)0"-]} (22) D(O) =D(0)  1 + 1 - ~  

with D(0) given by expression (19). The graph of D(O) is a down-bent 
parabola, with the saturation point at 

D~,, = D(1)=(1  +~) D(0) (23) 

In order to satisfy condition (1), we require that 4~/(1 + ~')= 1, whereby 
(22) reduces to 

D(O) = D(0)[ 1 + 0 - �88 - i,-) 02 ] (24) 

Comments are easiest if 1,'=0, which means that only jumps between 
nearest neighboring sites are allowed. In such a case D(O)=D(0)[ 1 + 0-- 
302], hence D . .  = 5 ., aD(0), which is certainly disappointing. 

5. C O R R E L A T E D  J U M P S  

If further extensions of the theory are to be constructed, one should 
think of correlated jumps. One of the possible causes might be dynamic 
interaction mediated by the lattice, e.g., by elastic waves. For the sake of 
simplicity we again assume that only single adsorption in each cage and 
jumps between neighboring cages are possible. If the adsorbed molecule 
causes the cage to shrink, then in a jump from i to i +  1 the first cage 
relaxes to a larger volume. This triggers a rarefaction shock wave, which 
temporarily enlarges the adjacent windows, thus lowering the barriers. 
If the change is sufficiently large, then there is a finite probability ~ for 
an immediate filling of the vacancy from any occupied adjacent cage. 
"Immediate" is to be understood as "happening during passage of the 
shock wave"; this time is certainly short compared to r -~. A second- 
generation jump followed by further after-jumps may then occur, giving 
rise to a series of contributions to the flux. Clearly the sum and thereby the 
diffusivity increase with increasing concentration, and for ~ close to 1 one 
may perhaps hope for something ressembling a 1/(1 -O)  behavior. 

Before working out the kinetics, one would wish to know whether a 
sufficiently strong interaction of the described kind is physically possible. 
Some preliminary rough arguments do not rule out such a possibility, 
though the material data seem to be marginal in this respect. Since serious 
estimates are difficult, and would presumably require a major effort 
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involving molecular dynamics calculations, it seems preferable to proceed 
in the reverse manner. We are going to assume that an interaction of the 
desired kind exists, and investigate the consequences for the function D(O). 
Only in case of a satisfactory outcome would an analysis of the interaction 
be worthwhile. 

Let us see what happens after a molecule jumps from site i to i +  1 in 
the + x direction. The occupancy is assured for the latter site, whereas for .  
the four neigboring sites in plane i and for the site i -  1 behind the respec- 
tive probabilities are 0i and 0;_~. Hence the probabilities of immediate 
after-jumps from the various directions are 3, (0~, and (O;_ ~; their con- 
tributions to the flux in direction x are negative, zero, and positive, respec- 
tively. Analogous events happen after an opposite initial jump. Summation 
of all terms up to second order in 8 yields an approximation for the 
diffusivity, 

D(O)= D(O) [ 1+2~(2 + ~) ] 1 - ~------Y- 0 +  0(02) (25) 

where D(0) = 12r/( 1 + (). The denominators account for the jumping hence 
and forth along _x .  We ought to have (=0 .215  in order to satisfy condi- 
tion ( 1 ). 

The saturation limit is found by studying the random walk of an 
isolated vacancy on an otherwise full lattice. Each jump triggers a fast 
sequence of moves, with their average number equal to 1 + ~ + ( 2 +  . . . .  
1/(1 -~.). Since the orientations of the jumps are uncorrelated, the average 
square of the total fast displacement L is obtained by summing the squares 
of the individual jump lengths, 

1 
L_~= 1 - ~ l -  ( 2 6 )  

The rate of such displacements is 6r, so that the resulting diffusivity is 

D~a,= L 2r = ll +~D(O) (27) 

For  the mentioned value of ~ this equals 1.55/?(0), which is again 
unrealistically low. At least the present version of a model with correlated 
jumps must therefore be dismissed. 
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